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This paper deals with the thermal field in a plane layer of selectively absorbing gas which 
has been injected into a steady turbulent stream of high-temperature gas flowing around a 
porous plate. The boundary-value problem in terms of the energy equation reduces to a 
nonlinear integral equation in terms of a dimensionless temperature, and this equation is 
solved numerically by the Newton--Kantorovich method. The results are presented on graphs 
of temperature and thermal flux in the absorbing gas layer as functions of the space coor- 
dinate~ Such a problem has been analyzed in [I] for the ease of an injected gray gas. 

In a plane layer of a selectively absorbing medium the heat is transmitted by radiation, convection, 
and molecular heat conduction. The physical properties of the medium and the optical properties of its 
boundary surfaces are assumed constant. The velocity of the injected gas is a certain function of the space 
coordinate. The formulation of the problem is based on a one-dimensional heat flow. 

For this particular ease the one-dimensional energy equation and the boundary conditions at the re- 
spective surfaces of a plane layer are written as 

dT deT dE (1) 
pCpW(y) d'--y- ~ ~ .0 ~ y ~ 5 

dyZ dy " 

r (0)= T~, T ((5) = T~ (2) 

Here E is the resul tant  hemispher ic  radiat ion density and w is the velocity of the injected gas.  The 
meaning of other symbols is as usual. 

The boundary-value problem (1), (2) is converted to dimensionless form: 

~m [ d~ dA I (3) 

0 ( 0 ) = 0 .  O ( i ) = G  (4) 

' 0 =  , 0 ~ = ~ ,  v ~oT** ' x =--~oT. - - - - ~ '  ~ = ~ '  f ( ~ = - ~ - - - ~ )  

Here the dimensionless qur ntities are the gas s t r eam velocity f ,  the gas tempera ture  0, the net ther-  
mal flux density ~, the pa ramete r s  B 0 and S k charac ter iz ing  the radiat ion-to-convection and the radiat ion- 
te -conduct ion  rat ios  in the total thermal  flux, while the dimensional re ference  quantities are the charac-  
ter is t ic  tempera ture  T ,  and the gas s t r e a m  velocity w . ;  ~0 is the Stefan--Boltzmann constant and 5 is the 
thickness of the plane layer .  
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The divergence of the radiant  flux is defined by the following integral  relat ion [2] : 

zz 1 
d@ 

Zt {} 
Z8 

8z (5) -- [exp (r (~)) -- t1 

W l z  ( ~ )  ~ O~ z {[alelz + 2a~r l ~ z K  a (hz)]/i" 2 ('f) -~- [a~8~z Jr- 2alr 2 e lzK a (hz) ] K ~ (h z - -  T)} 

W~z(~, x ) = h  z { K  11 " r  z[r  l(K~(t)+2r~K a(hz) K 2(h z - t ) )  X 

• K S (T) + r~ (K S (h z - -  t) + 2r lK 3 (hz) K 2 (t)) K~ (h z - -  x)]} 
1 

(Kn(~)=y~n-lexp( '~/ tx)dt~.  ":=hzL t = a z x  
0 

4 
" i  D : 3 0 ( - - )  , h~ ,  , a z = [ t  - -  4rlr2Ka2 ( h z ) ] - l ,  z~. = ~ v ,  , = co = - - ~ ,  ) 

(5) 

Here h z is the optical layer  thickness,  ai and r i  a re  the absorptivity and the ref lect ivi ty of respect ive 
layer  surfaces ,  v and v .  are  the variable and the charac te r i s t i c  spect ra l  frequency of the injected gas,  k 
and h are  the Boltzmann and the Plackconstants ,  Cz and giz are the Hanck  function at the variable tem- 
perature  0 and at t empera ture  0 i of the respect ive  layer  sur faces ,  and K n are  integrals  of exponential func- 
tions (i = 1, 2; n = 1, 2, 3). 

It is evident f rom (5) that do/d~ is an integral  express ion nonlinear with r e spec t  to 0, and this makes 
Eq. (3) a nonlinear integrodifferential  equation. Consequently, a solution to the boundary-value problem 
(3), (4) cannot be obtained in an analytical  form. With the aid of Green 's  function, Eq. (3) can be reduced to 
a nonlinear integral  equation in 0: 

1 

0 

d~ d 
F(6) = ~ G (~,x)-- Bo ~ [[(x) G (~, x)] 

( shxsh(i --~) 
/ - -  - - - ~ - -  (x<~) 

6 (~, 
z )=]  " sh ~ sh (l--x) ~--, ~ ( x ~ )  

Here G is Green 's  function of the modified l inear part  of the differential opera tor  in (3). 

The reduction of the integrodifferentiat  equation (3) to the integral  equation (6) makes it possible to 
solve the problem numerical ly  by means of efficient i teration procedures .  

For  solving Eq. (6) numerical ly,  the integral  is approximated by a Gauss quadrature.  After that, it 
reduces fur ther  to a sys tem of nonlinear algebraic equations the o rder  of which depends on the number of 
Gauss points. The result ing sys tem of equations is solved bythe Newton--Kantorovich i terat ion method [3]. 

The solution of (6) for various combinations of pa ramete r  values charac ter iz ing  the optical proper-  
ties of the porous plate, the rate of select ively absorbing.gas injection, and the radia t ion- to-convect ion 
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up to the hot su r f ace  of the l a y e r .  

r a t io  in the total  h e a t - t r a n s f e r  p r oc e s s  i s  shown in the fo rm of 
t e m p e r a t u r e  curves  with 02 = 0.1 and 02 = 1.0. The in jec ted  
medium here  is gaseous  carbon dioxide,  wh(~se absorp t ion  spec -  
t r um has been taken f rom [4]. S k i s  used as  the p a r a m e t e r  
c h a r a c t e r i z i n g  the r ad ia t ion - to -conduc t ion  r a t io .  The (dimen- 
s ion less )  t e m p e r a t u r e  d i s t r ibu t ion  a c r o s s  a l a y e r  is shown in 
Fig .  1 for  S k = 10 and f(~) = 1: the sol id  l ines  c o r r e s p o n d  to 
r l  = 0.9 and r2 = 0.1; the dashed l ines  c o r r e s p o n d  to r~ = r2 = 
0.5; cu rves  1, 2, 3, and 4 c o r r e s p o n d  to B0 = 0, 0.5, 1.0, and 4.0, 
r e s p e c t i v e l y .  

A l a rge  drop  of the t e m p e r a t u r e  level  is noted in the l a y e r  
when the inject ion p a r a m e t e r  B 0 i n c r e a s e s .  A l ready  at  B0 -> 4 
the t e m p e r a t u r e  d i s t r ibu t ion  a c r o s s  the l a y e r  becomes  uni form 
and the t e m p e r a t u r e  becomes  equal  to that  of the in jec ted  gas ,  

F u r t h e r m o r e ,  the shaping of the t e m p e r a t u r e  prof i le  is  af fec ted  by the 
op t ica l  p r o p e r t i e s  of the porous pla te .  As the r e f l e c t i v i t y  of the porous plate su r face  i n c r e a s e s ,  the t em-  
pe ra tu re  l eve l  d rops  somewhat .  

When the ve loc i ty  prof i le  in the in jec ted  gas  is l i nea r ,  f ( 0  = 1 - ~ ,  the effect  of the in jec t ion  p a r a m e t e r  
B 0 on the t e m p e r a t u r e  prof i le  in the l a y e r  becomes  somewhat  weaker .  The (d imensionless)  t e m p e r a t u r e  
d i s t r ibu t ion  a c r o s s  the l a y e r  with 0i = 0.1 and 02 = 1.0 is shown in Fig .  2 for  Sk = 10, f(~) = 1--~, and r l  = 
r2 = 0.1; cu rves  1, 2, and 3 c o r r e s p o n d  to B 0 = 0.5, 1.0, and 4.0, r e s p e c t i v e l y .  The cooled zone is  n a r r o w e r  
when B0 -> 4 than when the ve loc i ty  prof i le  in the in jec ted  gas  is  uniform.  

The effect  of the r ad i a t i on - to - conduc t i on  ra t io  S k on the shaping of t e m p e r a t u r e  p ro f i l e s  a t  constant  
va lues  of the in jec t ion  p a r a m e t e r  B 0 is  i l l u s t r a t e d  in Fig.  3. The (dimensionless)  t e m p e r a t u r e  d i s t r ibu t ion  
a c r o s s  a l a y e r  with 02 = 0.1 and 02 -= 1.0 is  shown here  for  B 0 = 0.15, f (  0 = 1, r l  = 0 .9 , andr2  = 0.1; cu rves  
1, 2, and 3 co r r e spond  to S k = 1000, 100, and 10, r e s p e c t i v e l y .  The obse rved  pa t t e rn  r e s e m b l e s  in many 
r e s p e c t s  the t h e r m a l  f ield in an absorb ing  l a y e r  which is m o l e c u l a r l y  heat  conductive only. 

It is  to be noted that,  dur ing in jec t ion  of a s e l ec t i ve ly  absorb ing  gas ,  the t e m p e r a t u r e  f ield r e m a i n s  
qua l i t a t ive ly  the same  as when a g r ay  gas is in jec ted  [1]. F r o m  the s tandpoint  of t h e r m a l  pro tec t ion ,  how- 
eve r ,  a m i s t  of s e l ec t i ve ly  absorb ing  gas may be more  effect ive (the cooled zone in a l a y e r  widens) than a 
mi s t  of g ray  gas .  Of p r a c t i c a l  i n t e r e s t  is  the ca lcula t ion  of the total  t he rma l  flux and i ts  individual  com-  
ponents {conductive, convect ive,  and rad ia t ive ) .  A single fo rmal  in tegra t ion  of Eq. (3) y ie lds  a fo rmula  for  
the total  t he rma l  flux, when the gas  ve loc i ty  is  uni form a c r o s s  the l a y e r  th ickness :  

q = q T  - r  qk -~- T = cons t  (7)  

qT = - -  dO/~i~,  q~ = B o O  (4) S t : ,  ~ ,  = 
z~ 

T (~.) - -  t - -  r l r e  (014 - -  024) ~ -  ~ z  (hz~) - -  2 I - -  r l r z  (elz - -  e~z )  d z  

zl  

1 

Tz (hz~) = hz t2~z (~) - wlz (~.) - I w2z (4, x ) s  z (x) dx} S k 
o 
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Here qT, qk, and ~ are  the fractional values of the conductive, the convective, and the radiative com- 
ponents, respect ively.  

The calculation of the total thermal  flux and its components presents  no difficulties, since the needed 
values of tempera ture  0 have been obtained ea r l i e r  f rom the solution to the integral  equation (6). Calcula- 
tions were made for Sk = 10 and f ( 0  = 1 with 01 = 0.1 and 02 = 1.0. The radiative component of the thermal  
flux r as a function of the dimensionless space coordinate has been plotted in Fig. 4 for various values 
of B 0 with el = 0.9 and r2 = 0.1. 

Analogous graphs for the radiative component are shown in Fig. 5 for S k = 10 , f (  0 = I ,  and rl = r2 = 
0.1; curves 1, 2, 3, 4, 5, and 6 cor respond to B 0 = 0, 0.25, 0.5, 1.0, 2.0, and 4.0, respect ively .  The charac-  
ter is t ic  maxima are noted here  (in Fig. 4 and Fig. 5) to be shifting toward the hot surface as the B 0 is in- 
c reased .  Such a shifting of the maxima can be explained by the effect of the convective component on the 
total thermal  flux and, par t icular ly ,  on the radiative component. The maxima of the thermal  flux are de- 
termined largely by the optical proper t ies  of the hot surface .  When the emiss ivi ty  is low (Fig. 4), then the 
maximum radiative flux decreases  as the B0 number is increased and, vice versa ,  the trend of the relat ion 
between this thermal  flux and the B0 number r e v e r s e s  when the hot surface is a good insulator  (Fig. 5). 
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